Gradient Calculator
Welcome to the gradient calculator, where you'll have the opportunity to learn how to calculate the gradient of a line going through two points. "What is the gradient?" you may ask. Well, have you ever looked at a mountain and said to yourself, "Wow, that mountain is quite steep, but not as steep as the one next to it!"? And if that kind of question has left you wondering how their steepness compares, you've come to the right place! Keep reading to know the gradient definition.
If you want to find the gradient of a nonlinear function, we recommend checking the average rate of change calculator.
What is the gradient?
Before we look at what the gradient is, let's return to our mountain scene and the absolutely crucial question of steepness.
Let's say you're skiing down a slope when The Big Question hits you. You stop and think about it before going any further. As we've mentioned above, all you need is two points to find the gradient, so why not be a little selfcentered and choose yourself as the... well, center, that is, the point (x₁,y₁) = (0,0) on the plane.
Now we're left with finding a second point, (x₂,y₂), up or down the slope. You look around to find some particularly bushy tree or a pretty young skier. Or an old smelly one, for that matter; I'm not judging.
Tell the tree or the skier to stand still while you use your handy ruler (that you always carry around with you, of course) to count how much higher/lower they are from you (that will be y₂) and how far they are from you (that will be x₂). Remember to count the distance between you two horizontally, not parallel to the slope. And there you have it! The ratio of y₂ / x₂ is your gradient or the steepness of the mountain at that point.
For sticking around while you perform your quick experiment, go and buy that skier some hot chocolate or hug the tree. They deserve as much.
Gradient definition
An informal definition of the gradient is as follows: it is a mathematical way of measuring how fast a line rises or falls. Think of it as a number you assign to a hill, a road, a path, etc., that tells you how much effort you have to put into cycling it (related to the calories burned by biking). If you're going uphill, you must struggle to reach the peak, so the energy needed (i.e., the gradient) is large. If you're going downhill, you don't even have to pedal to pick up speed, so the effort is, in fact, negative. And if you're on flat ground, it neither helps nor makes it harder, so it is neutral or has a gradient of zero.
And what if you're facing a vertical slope? Well, it's not always clear if you want to fall down it (which is effortless) or go scrambling up it. Therefore, in this case, the gradient is undefined.
Gradient formula
We calculate the gradient the same way we calculate the slope. We find two points and denote them with the cartesian coordinates (x₁,y₁) and (x₂,y₂), respectively. This is also the notation used in the calculator. Note that we used the same symbols in the reallife example. We want to see how they relate to each other, that is, what is the rise over run ratio between them. It is described by the gradient formula:
gradient = rise / run
with rise = y₂ − y₁ and run = x₂ − x₁. The rise is how much higher/lower the second point is from the first, and the run is how far (horizontally) they are from each other. We talk more about it in the dedicated rise over run calculator.
How to use this gradient calculator
Now that we know the gradient definition, it's time to see the gradient calculator in action and go through how to use it together, step by step:

Find two arbitrary points on the line you want to study and find their cartesian coordinates. Let's say we want to calculate the gradient of a line going through points (2,1) and (3,11).

Take the first point's coordinates and put them in the calculator as x₁ and y₁.

Do the same with the second point, this time as x₂ and y₂.

The calculator will automatically use the gradient formula and count it to be (11 − 1) / (3 − (2)) = 2.

Enjoy the knowledge of how steep the slope of your line is, and go tell all your friends about it!
Common misconceptions and mistakes
You may ask yourself, "Hold on, I think I've seen this elsewhere. Doesn't something similar happen when you count the slope or the rise over run?" You're absolutely right. All three concepts: gradient, slope, and rise over run, describe the same thing, so don't worry, as there is no difference between them.
You may also wonder how steep is steep; that is, what does the 2 in the above example tell us. Is it a lot, or is it not? Is the pretty skier going to be impressed by this number? Well, it's all a matter of perspective, and some may say one thing, while others will say the opposite. As a point of reference, you should remember that having a line parallel to the horizon is considered neutral here, as the gradient equals zero. When it rises (or falls), it becomes more and more like a line perpendicular to the horizon, where the slope goes to infinity when it rises (or minus infinity when it falls).
FAQ
How do I calculate gradient?
To determine the gradient of two points (x₁,y₁) and (x₂,y₂):
 Calculate rise as y₂ − y₁.
 Calculate run as x₂ − x₁.
 To find gradient, perform the division
rise / run
.  Don't hesitate to verify your result with an online gradient calculator.
What does a 1/10 gradient mean?
A gradient of 1/10 means that the height changes by 1 meter for every 10 meters of horizontal (forward) distance. This slope can also be expressed as a radio 1:10 or as 10%.
What is the rise if gradient is 2 and run is 10?
The answer is 20. This is because the gradient is defined as rise over run: gradient = rise / run
, and so rise = gradient × run
. For gradient = 2
and run = 10
, we obtain rise = 2 × 10 = 20
.
What is the run if gradient is 20% and rise is 2?
The answer is 10. To get this result, recall the formula gradient = rise / run
and transform it to run = rise / gradient
. Plugging in the data, we obtain run = 2 / 0.2 = 10
.