Omni Calculator logo

Binary Addition Calculator

Created by Rita Rain
Reviewed by Dominik Czernia, PhD and Steven Wooding
Last updated: Jan 18, 2024


This binary addition calculator sums up the numbers represented with zeros and ones (you can generate them with the binary converter).

Read this text to learn more about the language of computers and how to add binary numbers without any binary math calculator. Once you get your head around adding binary numbers, you may want to learn how to subtract them with our binary subtraction calculator.

🔎 Apart from summing, you can subtract, multiply, and divide these types of numbers using our binary calculator.

What is the binary system?

To understand the binary system, let's first look at the more familiar decimal system.

In the decimal system, we use ten digits (0-9), and, depending on their position, we multiply them by corresponding powers of ten. For example, let's break down the number 1934:

1934 = 1000 + 900 + 30 + 4

1934 = 1×1000 + 9×100 + 3×10 + 4×1

1934 = 1×10³ + 9×10² + 3×10¹ + 4×10⁰

If we made a formula for a 4-digit number, it could look like this:

a₃a₂a₁a₀ = a₃ × 10³ + a₂ × 10² + a₁ × 10¹ + a₀ × 10⁰

The symbol "a" here represents a digit from 0 to 9. The index next to "a" denotes the digit's place (we count from 0, from right to left).

Now, the binary system works similarly, but we only use two digits and multiply them by powers of two. So the formula would be following:

a₃a₂a₁a₀ = a₃ × 2³ + a₂ × 2² + a₁ × 2¹ + a₀ × 2⁰

In this system, we multiply two digits (0 and 1) by 2 to the power corresponding to its place in the number.

For example, we would write "9" as "1001" because:

1001 = 1 × 2³ + 0 × 2² + 0 × 2¹ + 1 × 2⁰ = 8 + 0 + 0 + 1 = 9

Analogically:

  • "2" in binary is "10" because 1 × 2¹ + 0 × 2⁰ = 2

  • "3" in binary is "11" because 1 × 2¹ + 1 × 2⁰ = 2 + 1 = 3

  • "4" in binary is "100" because 1 × 2² + 0 × 2¹ + 0 × 2⁰ = 4

How to use the binary addition calculator?

To make the binary math calculator perform the addition of binary numbers, follow the steps below:

  1. Input the first number in the first field of the binary addition calculator. Remember to use only zeros and ones. You don't need to enter leading zeros, e.g., for "00001111," you can input just "1111".

  2. Enter the second binary number in the second row.

  3. The binary addition calculator will display the result in the third field.

  4. In advanced mode (at the bottom), you can make the binary addition calculator print the long addition of the binary numbers.

What are the rules of binary addition?

There are four basic binary addition rules:

  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10 (write "0" in the column and carry 1 to the next bit)

The above equations work like in the decimal system, only here you need to carry 1 when the sum exceeds 1 (in the decimal system, we do it when it exceeds 9).

Binary sum: Adding binary numbers

How to add binary numbers? You could always convert binary numbers to decimals, add them as usual, and restore the result to the binary form.

The other way is to use the above binary addition rules and perform a long addition. Let's have a look at this binary sum:

carry:    1    1 ___________              1001        +   1101 ___________        =10110\text{carry:} \ \ \ \ 1\ \ \ \ 1 \\\ \_\_\_\_\_\_\_\_\_\_\_ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ 1001 \\\ \ \ \ \ \ \ \ + \ \ \ 1101 \\\ \_\_\_\_\_\_\_\_\_\_\_ \\\ \ \ \ \ \ \ \ = 10110

🔎 Our long addition calculator can help understand the operation above.

In the first column from the right, 1 + 1 gives us 2, so we need to carry 1 to the second column (1 placed in the second column equals two because 1 × 2¹ = 2) and write down 0 in the first column. In the second column, 0 + 0 = 0, so we just write the 1 we carried over. In the third column from the right, 0 + 1 = 1. In the fourth column, we have 1 + 1, so again, we write 0 and carry 1. As there's nothing left to add, we write down "1" at the beginning of the result (to the left).

Binary addition applications are present in many error correction and detection techniques, like the parity bit and the Hamming distance!

FAQ

What is binary addition?

Binary addition is the operation of summing numbers in binary form. It works like a "normal" (decimal) addition, but the number can have only zeros and ones as digits, so if the sum exceeds 1, you must carry 1 to the next bit. For example, 101 + 101 = 1010.

How to solve binary addition?

  1. To solve binary addition, perform long addition — place numbers vertically and add digits in columns going from right to left.

  2. If the sum in a column equals 2, carry 1 to the next column (to the left). If the sum is 1 or 0, write it down and go to the next column.

  3. Proceed this way until you sum all columns (including the carried numbers).

How to detect an overflow in binary addition?

Check if the sum of binary numbers makes sense. If the sum of two negative numbers is positive or the sum of two positive numbers is negative, something is wrong. This bug means that the sum overflowed — that is, the binary representation of the result can't fit in the allocated number of bits.

Rita Rain
+
=
Check out 13 similar binary calculators 1️0️
ANDBinary divisionBinary fraction… 10 more
People also viewed…

Black Friday

How to get best deals on Black Friday? The struggle is real, let us help you with this Black Friday calculator!

Diameter of a cone

Don't know the diameter of a cone, but have a host of other values? Fret not, the diameter of a cone calculator is here to help!

Snowman

The perfect snowman calculator uses math & science rules to help you design the snowman of your dreams!

Surface area of a square pyramid

Use this surface area of a square pyramid calculator to estimate the total surface area, base area, lateral surface area, and face area of your square pyramid.
Copyright by Omni Calculator sp. z o.o.
Privacy, Cookies & Terms of Service