Curie's Law Calculator

Created by Miłosz Panfil, PhD
Reviewed by Dominik Czernia, PhD and Steven Wooding
Last updated: Feb 02, 2023

Curie's law calculator helps you calculate the magnetization of paramagnetic materials, including their dependence on temperature. You can try the calculator right now or keep on reading to learn more about the magnetic susceptibility of paramagnetic materials and the Curie constant.

Magnetic susceptibility of paramagnetic materials

We can classify all the materials depending on their behavior in the presence of a magnetic field. A magnetic field attracts paramagnetic materials. The origin of this attractive force lies in the structure of paramagnets.

Inside the paramagnets, some atoms have electrons acting as tiny magnets. If we place an external magnet close to a paramagnetic material, these small magnets inside will flip just like blackboard magnets. In effect, they will be attracted to the external magnet, and the whole material will be pulled together with them.

Curie's law

OK, so we know that paramagnetic materials in the presence of a magnetic field become magnets. The natural question is: How strong are they? Curie's law answers this question.

We measure the strength of magnets using magnetization. Curie's law tells us that for not too strong magnetic fields and not too low temperatures (comparing with the absolute zero temperature, 0 K), the magnetization M is:

M = C/T × B,


  • C – Curie constant [K·A/(T·m)];
  • T – Temperature [K]; and
  • B – External magnetic field.

The factor C/T is the magnetic susceptibility and is often denoted by χ. Curie's law states that magnetization depends on the Curie constant C and the temperature T. Why is that?

Curie constant

The structure of the material depends on the number of tiny atomic magnets and the strength of each of them. The larger the number of them, or the stronger they are, the larger the susceptibility. The Curie constant C carries this information. If you want to learn more about the Curie constant, check the Curie constant calculator.

The Curie constant is not the end of the story. The second factor is the temperature. Thermal fluctuations kick the atomic magnets. The larger the temperature, the larger the jitters and the more kicking. You can learn more about this phenomenon with the Gibbs factor calculator. Because of these fluctuations, the atomic magnets are not perfectly aligned. This effect decreases the magnetization M.

Curie law's calculator

With the help of our calculator, you can quickly determine the magnetization for different situations. For example:

  1. Choose a room temperature: `T = 20 °C.
  2. Fix the external field: B = 1 T.
  3. Choose the Curie constant: C = 1.3 K·A/(T·m).
  4. The magnetization is: M = 0.004435 A/m.

💡 You might also be interested in our magnetic force between wires calculator.

Miłosz Panfil, PhD
Curie constant
Magnetic field
Check out 42 similar thermodynamics and heat calculators 🌡️
Biot numberBoltzmann factorBoyle's law… 39 more
People also viewed…

BMR - Harris-Benedict equation

Harris-Benedict calculator uses one of the three most popular BMR formulas. Knowing your BMR (basal metabolic weight) may help you make important decisions about your diet and lifestyle.

Immersed weight

The immersed weight calculator helps you understand why objects float or sink in different liquids and guides you through DIY experiments to see firsthand how immersing something in various liquids affects its weight in different ways.

Meat footprint

Check out the impact meat has on the environment and your health.

Mixing ratio of air

The mixing ratio of air calculator allows you to find the actual and saturation mixing ratios of air as well as associated relative humidity.
Copyright by Omni Calculator sp. z o.o.
Privacy policy & cookies
main background