Ellipse Calculator

Created by Bogna Szyk
Reviewed by Steven Wooding
Last updated: Apr 06, 2022

This equation of an ellipse calculator is a handy tool for determining the basic parameters and most important points on an ellipse. You can use it to find its center, vertices, foci, area, or perimeter. All you need to do is write the ellipse standard form equation and watch this calculator do the math for you.

We wrote this article to help you understand the basic features of an ellipse. Read on to learn how to find the area of an oval, what is the focus of an ellipse, or how do you define the eccentricity.

If you like the ellipse calculator, try the octagon calculator, too!

What is an ellipse?

An ellipse is a generalized case of a closed conical section. It is oval in shape and is obtained if you slice a cone with an inclined plane. In the case when the inclination angle of the plane is equal to zero, you get a circle (circles are a subset of ellipses).

ellipse
Source: Wikimedia

If you want to draw an ellipse, you must determine two points, called foci (points F₁ and F₂ in the image above). Then, the ellipse is defined as a set of all points for which the sum of distances to the first and the second focus is equal to a constant value. In a circle, both foci overlap at one point.

Ellipse standard form

The equation of an ellipse is a generalized case of the equation of a circle. It has the following form:

(x - c₁)² / a² + (y - c₂)² / b² = 1

where:

  • (x, y) - Coordinates of an arbitrary point on the ellipse;
  • (c₁, c₂) - Coordinates of the ellipse's center;
  • a - Distance between the center and the ellipse's vertex, lying on the horizontal axis; and
  • b - Distance between the center and the ellipse's vertex, lying on the vertical axis.

If the ellipse is horizontal (i.e. it is a circle "stretched" along the horizontal axis), then a is greater than b. If it is vertical, then b is greater than a. For the parameters a = b the ellipse is a regular circle of radius a and the following equation of a circle:

  • (x - c₁)² + (y - c₂)² = a²

How to find the area of an oval

Once you know the equation of an ellipse, you can calculate its area. It is actually a straightforward task. First, recall the formula for the area of a circle:

  • A = πr²

In the case of an ellipse, you don't have a single value for a radius but two different values of a and b. All you have to do is to substitute their product in the place of :

  • A = π * a * b

Surprisingly, finding the perimeter of an ellipse is much harder. There are many approximations that give solutions at various precision and accuracy levels. Our ellipse calculator uses the approximation given by Ramanujan:

Pπ(a+b)(1+3(ab)2(a+b)210+(43(ab)2(a+b)2))\small P \approx \pi \, (a + b)\Bigg(\frac{1 + 3\frac{(a-b)^2}{(a+b)^2}}{10 + \sqrt(4 - 3\frac{(a-b)^2}{(a+b)^2})}\Bigg)

Eccentricity of an ellipse

Our ellipse standard form calculator can also provide you with the eccentricity of an ellipse. What is this value? It is a ratio of two values: the distance between any point of the ellipse and the focus; and the distance from this arbitrary point to a line called the directrix of the ellipse.

Every ellipse is characterized by a constant eccentricity. If the ellipse is a circle, then the eccentricity is 0. If it is infinitely close to a straight line, then the eccentricity approaches infinity.

Eccentricity is calculated with the use of the following equation:

  • eccentricity = √(a² - b²) / a for a horizontal ellipse; and
  • eccentricity = √(b² - a²) / b for a vertical ellipse.

Center, foci, and vertices of an ellipse

Apart from the basic parameters, our ellipse calculator can easily find the coordinates of the most important points on every ellipse. These points are the center (point C), foci (F₁ and F₂), and vertices (V₁, V₂, V₃, V₄).

  1. To find the center, take a look at the equation of the ellipse. The coordinates of the center are simply the numbers (c₁, c₂).
  2. The foci of a horizontal ellipse are:
    • F₁ = (-√(a²-b²) + c₁, c₂)
    • F₂ = (√(a²-b²) + c₁, c₂)
  3. The foci of a vertical ellipse are:
    • F₁ = (c₁, -√(b²-a²) + c₂)
    • F₂ = (c₁, √(b²-a²) + c₂)
  4. Vertices of an ellipse are located at the points:
    • V₁ = (-a + c₁, c₂)
    • V₂ = (a + c₁, c₂)
    • V₃ = (c₁, -b + c₂)
    • V₄ = (c₁, b + c₂)

There's another parameter related to conic sections called 'latus rectum', and you can learn about it in our latus rectum calculator!

Bogna Szyk
Ellipse with semiaxes, foci, center and vertices marked
(x - c₁)² / a² + (y - c₂)² / b² = 1
a
b
c₁
c₂
Eccentricity
Area
Perimeter
Center
x-coordinate
y-coordinate
First focus F1
x-coordinate
y-coordinate
Second focus F2
x-coordinate
y-coordinate
First vertex V1 (horizontal axis)
x-coordinate
y-coordinate
Second vertex V2 (horizontal axis)
x-coordinate
y-coordinate
First vertex V3 (vertical axis)
x-coordinate
y-coordinate
Second vertex V4 (vertical axis)
x-coordinate
y-coordinate
Check out 21 similar 2d geometry calculators 📏
AreaArea of a rectangleArea of crescent… 18 more
People also viewed…

Average

The average calculator calculates the average of a set of up to 30 numbers.

Circle skirt

Circle skirt calculator makes sewing circle skirts a breeze.

Graphing quadratic inequalities

Graphing quadratic inequalities calculator will show you how to solve your homework problems by drawing plots rather than performing daunting calculations!

Test grade

With this test grade calculator you'll easily find out the test percentage score and grade.
Omni Calculator
Copyright by Omni Calculator sp. z o.o.
Privacy policy & cookies
main background