Characteristic Polynomial Calculator
With the help of our characteristic polynomial calculator, you can quickly determine the characteristic polynomial of a 2×2, 3×3, or 4×4 matrix.
Do you want to learn how to find the characteristic polynomial? Keep reading, as we first recall what a characteristic polynomial is and then give the formulas as well as examples. In particular, there is a detailed explanation of how to find the characteristic polynomial of a 3x3 matrix.
If you're working with matrices, you might also find our eigenvalue and eigenvector calculator useful.
What is a characteristic polynomial?
We define the characteristic polynomial, p(λ)
, of a square matrix, A
, of size n × n
as:
p(λ):= det(A  λI)
where,
I
is the identity matrix of the sizen × n
(the same size asA
); anddet
is the determinant of a matrix.
Keep in mind that some authors define the characteristic polynomial as det(λI  A)
. We can obtain that polynomial from the one that we defined above by multiplying it by (1)ⁿ
. Hence, those polynomials coincide if n
is even. If n
is odd, you can go from one polynomial to the other by changing all their coefficients to opposite numbers (i.e., changing all of their signs). However, as long as we are concerned with the roots (i.e., the eigenvalues of A
), it doesn't matter which definition you use.
As you now know what a characteristic polynomial is, why not look at some examples of how to find the characteristic polynomial?
How to use this characteristic polynomial calculator?
You don't need to be a math expert to use the characteristic polynomial calculator. Just follow steps below:

Tell us the size of the matrix for which you want to find the characteristic polynomial.

Enter all the coefficients of your matrix  row by row.

Our characteristic polynomial calculator works as fast as lightning  the characteristic polynomial of your matrix appears at the bottom! ⚡

Should you want to use the alternative definition of a characteristic polynomial, go to the
advanced mode
.
Characteristic polynomial of a 2×2 matrix
The determinant of

is equal to
(a  λ)(d  λ)  bc = λ²  (a + d)λ + (ad  bc)
This is because, to find the determinant of a 2×2 matrix, you need to multiply the elements from its upperleft and bottomright corners and subtract the product of coefficients from the upperright and bottomleft corners.
Observe that we can write the characteristic polynomial of a 2×2 matrix A
as:
λ² − tr(A)λ + det(A)
,
where,
tr(A)
is the trace ofA
, i.e., the sum of the diagonal elements ofA
.
Example
Let us take a look at an example. We will find the characteristic polynomial of the following matrix:

As we explained in the first section, we need to calculate the determinant of

We have
(2λ)(3λ)  3 * 4 = λ²  5λ  6
Alternatively, we might have computed tr(A) = 2 + 3 = 5
and det(A) = 2 * 3  3 * 4 = 6
.
Characteristic polynomial of a 3x3 matrix
Before we give you the general formula, let's solve an example. We will find the characteristic polynomial of
⌈  0  2  1  ⌉ 
  1  3  1   
⌊  2  0  2  ⌋ 
We need to calculate the determinant of
⌈   λ  2  1  ⌉ 
  1  3  λ  1   
⌊  2  0  2  λ  ⌋ 
With the help of the Rule of Sarrus, we obtain:
λ(3  λ)(2  λ) + 1*0*1 + 2*2*(1)  1*(3  λ)*2  (1)*0*(λ)  (2  λ)*2*1
which simplifies to:
λ³ + 5λ²  2λ  14
In general, the characteristic polynomial of a 3x3 matrix:
⌈  a₁  b₁  c₁  ⌉ 
  a₂  b₂  c₂  ｜ 
⌊  a₃  b₃  c₃  ⌋ 
λ³ + (a₁ + b₂ + c₃)λ²  (a₁b₂  a₂b₁ + a₁c₃  a₃c₁ + b₂c₃  b₃c₂)λ + (a₁b₂c₃  a₂b₃c₁ + a₃b₁c₂  a₃b₂c₁  a₁b₃c₂  a₂b₁c₃)
We see that the coefficient of λ²
is just tr(A)
, and the intercept equals det(A)
. Moreover, the coefficient of λ
is the sum of all of the 2x2 principal minors of A
. This is a part of the general rule, as we will explain in the next section.
How to find the characteristic polynomial of larger matrices?
In general, the characteristic polynomial of an n x n
matrix A
has the form:
(1)ⁿλⁿ + (1)ⁿ⁻¹*S₁*λⁿ⁻¹ + ... + (1)ᵏ*Sₙ₋ₖ*λᵏ + ... + Sₙ
where,
S_{k}
is the sum of allk x k
principal minors ofA
fork = 0, ..., n
. In particular,S₁ = tr(A)
andSₙ = det(A)
.
As you can see, it can be quite tedious to compute the characteristic polynomial by hand. That's why we've created this characteristic polynomial calculator! 😎
Properties of the characteristic polynomial of a matrix
Here are some useful properties of the characteristic polynomial of a matrix:

A matrix is invertible (and so has full rank) if and only if its characteristic polynomial has a nonzero intercept.

The degree of an eigenvalue of a matrix as a root of the characteristic polynomial is called the algebraic multiplicity of this eigenvalue.

The matrix,
A
, and its transpose,Aᵀ
, have the same characteristic polynomial:det(A  λI) = det(Aᵀ  λI)

If two matrices are similar, then they have the same characteristic polynomial. However, the opposite is not true: two matrices with the same characteristic polynomial need not be similar!
Example: The following two matrices both have a characteristic polynomial equal to
(λ  2)²
, but they are not similar since the right one is diagonalizable and the left one is not:⌈ 2 1 ⌉ ⌊ 0 2 ⌋ ⌈ 2 0 ⌉ ⌊ 0 2 ⌋ 
The Cayley–Hamilton theorem says that every matrix satisfies its own characteristic equation. More precisely: by replacing
λ
byA
in the characteristic polynomial, we obtain the zero matrix (the intercept gets multiplied by the identity matrix).Example:
We know that
λ²  5λ  6
is the characteristic polynomial of⌈ 2 3 ⌉ ⌊ 4 3 ⌋ It follows that
A²
is equal to⌈ 16 15 ⌉ ⌊ 20 21 ⌋ and
5A
is equal to⌈ 10 15 ⌉ ⌊ 20 15 ⌋ hence, and
A²  5A
is equal to⌈ 6 0 ⌉ ⌊ 0 6 ⌋ i.e., to
6I
, and soA²  5A  6I
is indeed the zero matrix.
A  = 
