Omni calculator
Last updated:

Calculadora de Movimento de Projétil

Table of contents

O que é movimento de projéteis? Definição de movimento de projéteisAnálise de movimento de projéteisEquações de movimento de projéteisFAQs

A calculadora de movimento de projétil da Omni é uma ferramenta que ajuda você a analisar o movimento de projéteis em trajetórias parabólicas. Com ela, você pode encontrar o tempo de voo, as componentes da velocidade, o alcance do projétil e a altura máxima de voo. Continue lendo se você quiser entender o que é movimento de um projétil, familiarizar-se com a definição de movimento de projéteis e determinar os valores mencionados acima usando as equações de movimento de projéteis.

Prefere assistir um vídeo a ler? Aprenda tudo o que precisa em 90 segundos com este vídeo que fizemos para você:

O que é movimento de projéteis? Definição de movimento de projéteis

Imagine um arqueiro lançando uma flecha no ar. Ela começa a se mover para cima e para frente, com uma certa inclinação em relação ao solo. Quanto mais ela voa, mais lenta é sua subida e, finalmente, ela começa a descer, movendo-se agora para baixo e para frente e, finalmente, atingindo o solo novamente. Se você pudesse traçar seu caminho, ele seria uma curva chamada trajetória parabólica. Qualquer objeto que se mova dessa forma caracteriza o movimento de projétil. A propósito, a Omni também tem a calculadora de velocidade de flecha, que analisa o movimento de flechas, experimente!

Apenas uma força atua em um projétil: a força da gravidade. A resistência do ar é sempre omitida. Se você desenhasse um diagrama de corpo livre desse objeto, só precisaria desenhar um vetor descendente e denotá-lo como "gravidade". Se houvesse qualquer outra força agindo sobre o corpo, então, pela definição de movimento de projétil, ele não seria um projétil.

Análise de movimento de projéteis

O movimento de projéteis é bastante lógico. Vamos supor que você saiba a velocidade inicial do objeto VV, o ângulo de lançamento α\alpha e a altura inicial hh. Nossa calculadora de movimento de projéteis segue essas etapas para que você encontre todos os parâmetros restantes:

  1. Calcule as componentes do vetor velocidade.
Vetor velocidade e suas componentes horizontal e vertical.
  • A componente de velocidade horizontal VxV_\mathrm x é igual a VcosαV \cdot \cos\alpha.
  • A componente de velocidade vertical VyV_\mathrm y é igual a VsenαV \cdot \mathrm{sen}\,\alpha.
  • Os três vetores: VV, VxV_\mathrm x e VyV_\mathrm y formam um triângulo retângulo.

Se a componente da velocidade vertical for igual a 0, então temos o movimento horizontal do projétil. Se, por outro lado, α = 90°, então temos uma queda livre. Nós também abordamos esses cenários na calculadora de movimento horizontal de projétil e na calculadora de queda livre da Omni.

  1. Escreva as equações de movimento.

Distância

  • A distância horizontal percorrida pode ser expressa como x=Vxtx = V_\mathrm x \cdot t, onde tt é o tempo.
  • A distância vertical do solo é descrita pela fórmula y=h+Vy0tgt2/2y = h + V_\mathrm{y0} \cdot t - g \cdot t^2 / 2, onde gg é a aceleração da gravidade e Vy0V_\mathrm{y0} é a velocidade vertical inicial.

Velocidade

  • A velocidade horizontal é igual a VxV_\mathrm x.
  • A velocidade vertical pode ser expressa como Vy=Vy0gtV_\mathrm y = V_\mathrm{y0} - g \cdot t.

Aceleração

  • A aceleração horizontal é igual a 0.
  • A aceleração vertical é igual a g-g (porque somente a gravidade atua sobre o projétil).
  1. Calcule o tempo de voo.
Gráfico de movimento do projétil: tempo de voo.
  • O voo termina quando o projétil atinge o solo. Podemos dizer que isso acontece quando a distância vertical do solo é igual a 0. No caso em que a altura inicial é 0, a fórmula pode ser escrita como: Vy0tgt2/2=0V_\mathrm{y0}\cdot t - g \cdot t^2 / 2 = 0. Então, a partir dessa equação, descobrimos que o tempo de voo é:
t=2Vy0g=2V0gsenα.\footnotesize \quad t = 2 \cdot \frac{V_\mathrm{y0}}{g} = 2 \cdot \frac{V_0}{g} \cdot \mathrm{sen}\,\alpha.
  • No entanto, se estivermos jogando o objeto de alguma elevação, a fórmula não será tão simples quanto antes, e teremos uma equação quadrática para resolver: h+Vy0tgt2/2=0h + V_\mathrm{y0} \cdot t - g \cdot t^2 / 2 = 0. Após resolvermos essa equação, obtemos:
t=V0senα+(V0senα)2+2ghg\footnotesize t \! = \! \frac{V_0 \cdot \mathrm{sen}\,\alpha \! + \! \sqrt{ \! (V_0 \cdot \mathrm{sen}\,\alpha)^2 \! + \! 2 \cdot g \cdot h}}{g}
  1. Calcule o alcance do projétil.
Gráfico de movimento do projétil: alcance.
  • O alcance do projétil é a distância horizontal total percorrida durante o tempo de voo. Novamente, se estivermos lançando o objeto do solo (altura inicial = 0), poderemos escrever a fórmula como R=Vxt=Vx2Vy0/gR = V_\mathrm x \cdot t = V_\mathrm x \cdot 2 \cdot V_\mathrm{y0} / g. Ela também pode ser transformada na forma: R=V02sen(2α)/gR = V^2_0 \cdot \mathrm{sen}\,(2\alpha) / g

  • As coisas ficam mais complicadas se considerarmos uma elevação inicial diferente de 0. Neste caso, precisamos substituir o tempo de voo tt na fórmula do alcance:

R=Vxt=V0cosαV0senα+(V0senα)2+2ghg\footnotesize R = V_\mathrm x \cdot t = \\[0.8em] V_0\! \cdot \cos \alpha \frac{V_0 \! \cdot \mathrm{sen}\,\alpha \! + \! \sqrt{ \! (V_0 \! \cdot \mathrm{sen}\,\alpha)^2 \! + \! 2 \cdot g\cdot h}}{g}
  1. Calcule a altura máxima.
Gráfico de movimento do projétil: altura máxima.
  • Quando o projétil atinge a altura máxima, ele para de se mover para cima e começa a cair. Isso significa que sua componente de velocidade vertical muda de positiva para negativa, além de ser igual a 0 por um breve instante de tempo t(Vy=0)t(V_\mathrm y=0).
  • Se Vy0gt(Vy=0)=0V_\mathrm {y0} - g \cdot t(V_\mathrm y=0) = 0, então, podemos reescrever esta equação como t(Vy=0)=Vy0/gt(V_\mathrm y=0) = V_\mathrm{y0} / g.
  • Agora, basta encontrarmos a distância vertical do solo naquele momento:
hmax=Vy0t(Vy=0)gt2(Vy=0)2=Vy022g=V02sen2α2g\footnotesize \begin{split} h_\mathrm{max} = &V_\mathrm{y0} \cdot t( V_\mathrm y \! = \! 0) \! - \! \frac{g \cdot t^2 (V_\mathrm y \! = \! 0)}{2} = \\[0.8em] &\frac{V^2_\mathrm{y0}}{2 g} = \frac{V^2_0 \cdot \mathrm{sen} ^2 \,\alpha}{2 g} \end{split}
  • Felizmente, no caso do lançamento de um projétil de alguma altura inicial hh, precisamos simplesmente adicionar esse valor à fórmula final:
hmax=h+V02sen2α2g\footnotesize h_\mathrm{max} = h + \frac{V^2_0 \cdot \mathrm{sen}^2 \,\alpha}{2 g}

Equações de movimento de projéteis

Ufa, foram muitos cálculos! Vamos resumir tudo isso escrevendo as equações de movimento de projéteis mais essenciais:

  1. Lançamento do objeto a partir do solo (altura inicial h = 0):
  • Componente da velocidade horizontal: Vx=V0cosαV_\mathrm x = V_0 \cdot \cos \alpha
  • Componente da velocidade vertical: Vy=V0senαgtV_\mathrm y = V_0 \cdot \mathrm{sen}\, \alpha - g\cdot t
  • Tempo de voo: t=2Vy0/gt = 2 \cdot V_\mathrm{y0} / g
  • Alcance do projétil: R=2VxVy0/gR = 2 \cdot V_\mathrm x \cdot V_\mathrm{y0} / g
  • Altura máxima: hmax=Vy02/(2g)h_\mathrm{max} = V^2_\mathrm{y0} / (2 g)
  1. Lançamento do objeto de alguma elevação (altura inicial h > 0):
  • Componente da velocidade horizontal: Vx=V0cosαV_\mathrm x = V_0 \cdot \cos \alpha
  • Componente da velocidade vertical: Vy=V0senαgtV_\mathrm y = V _0 \cdot \mathrm{sen}\, \alpha - g\cdot t
  • Tempo de voo: t=[Vy0+Vy02+2gh]/gt = \left[V_\mathrm{y0} + \sqrt{V^2_\mathrm{y0} + 2 \cdot g \cdot h}\right] / g
  • Alcance do projétil: R=Vx[Vy0+Vy02+2gh]/gR = V_\mathrm x \cdot \left[V_\mathrm{y0} + \sqrt{V^2_\mathrm{y0} + 2 \cdot g \cdot h}\right] / g
  • Altura máxima: hmax=h+Vy02/(2g)h_\mathrm{max} = h + V^2_ \mathrm{y0} / (2 g)

Com a nossa calculadora de movimento de projéteis, você certamente economizará muito tempo. Ela também pode funcionar "ao contrário". Por exemplo, insira o tempo de voo, a distância e a altura inicial e veja como ela faz todos os cálculos para você!

Não deixe de conferir também a calculadora de parábola da Omni, para saber mais sobre essa curva do ponto de vista matemático.

FAQs

O projétil deve sempre se deslocar na horizontal?

Não, o movimento de projéteis e suas equações abrangem todos os objetos em movimento, no qual a única força atuando sobre eles é a gravidade. Isso inclui objetos que são lançados diretamente para cima, aqueles arremessados horizontalmente, aqueles que têm uma componente horizontal e vertical e aqueles que são simplesmente derrubados.

O que seria um exemplo de movimento de projétil?

Os objetos cujo movimento é considerado como de um projétil incluem: chaves sendo arremessadas, um projétil de 300 kg sendo arremessado 90 m por uma catapulta, uma bola de futebol sendo chutada de modo que não toque mais o chão, um mergulhador pulando de um trampolim, um projétil de artilharia no momento em que sai do canhão e um carro tentando pular uma ponte.

Como um projétil pode cair ao redor da Terra?

Há apenas uma força atuando em um projétil, a gravidade. Isso significa que um objeto acabará caindo na Terra. Mas e se o objeto estiver se movendo tão rápido horizontalmente que, quando chegar ao solo, o solo não estará mais lá? Esse é o princípio que rege as órbitas dos satélites.

Como faço para encontrar a aceleração no movimento de projéteis?

apenas uma força atuando em um objeto em movimento de projétil, a gravidade. Isso significa que qualquer alteração na velocidade vertical é devida à aceleração gravitacional, que é de 9,81 m/s2 na Terra. Na direção horizontal, não há alteração na velocidade, pois se supõe que a resistência do ar seja desprezível, portanto a aceleração é 0.

Que fatores afetam o movimento de um projétil lançado horizontalmente?

A velocidade inicial, a altura inicial de onde o projétil está sendo lançado e a gravidade afetarão um projétil lançado horizontalmente. A resistência do ar também terá um efeito na vida real, mas, na maioria dos cálculos teóricos, ela é insignificante e, portanto, ignorada. Se o projétil tiver asas, isso também afetará seu movimento, pois ele planará.

O que exatamente é um projétil?

Um projétil é um objeto que está em movimento, no ar e não tem nenhuma força agindo sobre ele além da aceleração devido à gravidade. Você provavelmente pode pensar em vários exemplos: uma bola lançada ou uma pedra lançada de um estilingue. Até mesmo a Lua pode ser considerada um projétil, movendo-se em relação à Terra!

Quais são as características do movimento de projéteis?

As características do movimento do projétil são que a velocidade horizontal do objeto não muda, que sua velocidade vertical muda constantemente devido à gravidade, que a forma de sua trajetória será uma parábola, e que o objeto não é afetado pela resistência do ar.

Quem descreveu com precisão o movimento de projéteis pela primeira vez e quando?

Galileu foi a primeira pessoa a descrever o movimento de projéteis com precisão, dividindo o movimento em componentes horizontal e vertical e percebendo que o gráfico do movimento de qualquer objeto seria sempre uma parábola. Ele descreveu isso em seu livro, De Motu (Sobre o Movimento), publicado por volta da década de 1590.

Por que um projétil segue uma trajetória curva?

Um objeto segue uma trajetória parabólica devido à forma como suas duas componentes de movimento, a horizontal e a vertical, são afetadas pela gravidade. A componente horizontal não é afetada pela gravidade de forma alguma e, portanto, permanece constante e linear. A componente vertical, entretanto, é constantemente afetada pela gravidade e, portanto, aumentará em altura e depois diminuirá, acelerando devido à gravidade.

Por que 45 graus é o ângulo ideal para lançar projéteis?

A equação da distância percorrida por um projétil afetado pela gravidade é sen(2θ) ⋅ v2/g, onde θ é o ângulo, v é a velocidade inicial e g é a aceleração devido à gravidade. Supondo que v2/g seja constante, a maior distância será quando sen(2θ) estiver em seu máximo, que é quando 2θ = 90 graus. Isso significa que θ = 45 graus.

Projectile motion image. Velocity, angle of launch, initial height, time of flight, distance and maximum height marked

Initial parameters

Flight parameters at given time

Check out 26 similar kinematics calculators — how things move ⏱️
Arrow speedBallistic coefficientCar jump distance...23 more