Logo di Omni Calculator
Board

Calcolatore per la Circonferenza Goniometrica

Eccoti nel calcolatore per la circonferenza goniometrica ⭕. Il nostro strumento ti aiuterà a determinare le coordinate di qualsiasi punto della circonferenza goniometrica, talvolta chiamata circonferenza trigonometrica, circonferenza unitaria o cerchio unitario. Basta inserire l'angolo ∡, e ti mostreremo il seno e il coseno dell'angolo.

Se non sai ancora che cos'è una circonferenza goniometrica, continua a leggere per trovare la risposta. Troverai anche il grafico della circonferenza goniometrica e una spiegazione su come trovare la tangente, il seno e il coseno della circonferenza goniometrica; quindi non aspettare oltre e continua a leggere questo fondamentale calcolatore di trigonometria!

Che cos'è la circonferenza goniometrica?

La circonferenza goniometrica è un cerchio con raggio 11 (raggio unitario). Nella maggior parte dei casi, è centrato nel punto (0,0)(0,0), l'origine del sistema di coordinate.

La circonferenza goniometrica è un concetto molto utile per imparare la trigonometria e la conversione degli angoli.

Circonferenza goniometrica in un sistema di coordinate.

Ora che sai cos'è la circonferenza goniometrica, passiamo alle relazioni nella circonferenza goniometrica.

Circonferenza goniometrica: Seno e coseno

Ok, allora perché la circonferenza goniometrica è così utile nella trigonometria?

Prima di tutto, se è anche chiamata circonferenza trigonometrica, ci sarà pure una ragione! Ma passiamo al sodo:

In sintesi

Le relazioni di seno e coseno della circonferenza goniometrica sono le seguenti:

  • Il seno è la coordinata y; e
  • Il coseno è la coordinata x.

🙋 Hai bisogno di un'introduzione al seno e al coseno? Visita il nostro calcolatore del seno 🇺🇸 e il calcolatore del coseno 🇺🇸!

Spiegazione dettagliata

Prendiamo un punto A qualsiasi sulla circonferenza goniometrica.

Circonferenza goniometrica in un sistema di coordinate, con punto A(x,y).
  • Le coordinate di questo punto sono xx e yy. Trattandosi di una circonferenza goniometrica, il raggio rr è uguale a 11 (distanza tra un punto PP e il centro del cerchio):
Circonferenza goniometrica in un sistema di coordinate con punto A(x,y) e cateti |x| e |y|
  • Proiettando il raggio sugli assi xx e yy, otterremo un triangolo rettangolo, dove x|x| e y|y| sono le lunghezze dei cateti, e l'ipotenusa è uguale a 11:
Circonferenza goniometrica in un sistema di coordinate con formule di seno e coseno.
  • Come in ogni triangolo rettangolo, puoi determinare i valori delle funzioni trigonometriche trovando i rapporti tra i lati:
sin(α)=cateto oppostoipotenusa=y1=y\sin(\alpha)=\frac{\mathrm{cateto\ opposto}}{\mathrm{ipotenusa}} = \frac{y}{1} = y

Quindi, in altre parole, il seno è la coordinata yy

cos(α)=cateto adiacenteipotenusa=x1=x\cos(\alpha) = \frac{\mathrm{cateto\ adiacente}}{\mathrm{ipotenusa}} = \frac{x}{1} = x

E il coseno è la coordinata xx.

Circonferenza goniometrica in un sistema di coordinate con punto A(x,y) = (cos a, sin a)

L'equazione della circonferenza trigonometrica, derivata direttamente dal teorema di Pitagora, è la seguente:

x2+y2=1x^2+y^2=1

Oppure, in modo analogico:

sin2(α)+cos2(α)=1\sin^2(\alpha) + \cos^2(\alpha) = 1

🙋 Per un'analisi approfondita, abbiamo creato il calcolatore della tangente 🇺🇸!

L'intima connessione tra trigonometria e triangoli non può essere più sorprendente! Per saperne di più su questi importanti concetti, visita il calcolatore per il triangolo rettangolo di Omni.

Tangente della circonferenza goniometrica e altre funzioni trigonometriche

Puoi trovare direttamente il valore della tangente della circonferenza goniometrica se ricordi la definizione di tangente:

Triangolo rettangolo — Illustrazione della definizione di tangente. Cateto opposto diviso per il cateto adiacente.

Il rapporto tra il cateto opposto e quello adiacente rispetto a un angolo in un triangolo rettangolo.

tanα=cateto oppostocateto adiacente\tan{\alpha} = \frac{\mathrm{cateto\ opposto}}{\mathrm{cateto\ adiacente}}

Come abbiamo imparato dal paragrafo precedente, sin(α)=y\sin(\alpha) = y e cos(α)=x\cos(\alpha) = x, quindi:

tan(α)=yx\tan(\alpha) = \frac{y}{x}

Possiamo anche definire la tangente dell'angolo come il suo seno diviso per il suo coseno:

tan(α)=sin(α)cos(α)=yx\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{y}{x}

Il che, ovviamente, ci porterà allo stesso risultato.

Un altro metodo è quello di utilizzare il nostro calcolatore per la circonferenza goniometrica, ovviamente. 😁

Hai ancora fame di sapere e vuoi vedere il valore della tangente sulla circonferenza goniometrica?

È un po' più complicato che determinare il seno e il coseno, che sono semplicemente delle coordinate. Esistono due modi per visualizzare la tangente della circonferenza goniometrica:

Metodo 1

Tangente della circonferenza goniometrica, metodo 1.
  1. Crea una linea tangente al punto AA;
  2. Questa intersecherà l'asse xx nel punto BB; e
  3. La lunghezza del segmento ABˉ\bar{AB} è il valore della tangente.

Metodo 2

Tangente della circonferenza goniometrica, metodo 2.
  1. Traccia una linea x=1x = 1;
  2. Prolunga la linea contenente il raggio;
  3. Nomina l'intersezione di queste due linee come punto CC; e
  4. La tangente, tan(α)\tan(\alpha), è la coordinata yy del punto CC.

In entrambi i metodi, abbiamo creato dei triangoli rettangoli con il lato adiacente pari a 1. 😎

Seno, coseno e tangente non sono le uniche funzioni che puoi costruire sulla circonferenza goniometrica. Oltre alla cotangente, puoi presentare anche altre funzioni meno conosciute, come la secante, la cosecante e il senoverso, la quale non è più utilizzata:

Funzioni trigonometriche basate sul cerchio.
Grafico di Steven G. Johnson, Wikipedia, CC BY-SA.

Grafico della circonferenza goniometrica — Circonferenza goniometrica in radianti e gradi

Il concetto di circonferenza goniometrica, conosciuta anche come circonferenza unitaria, è molto importante perché puoi usarlo per trovare il seno e il coseno di qualsiasi angolo. Di seguito ti presentiamo alcuni angoli comunemente incontrati nel grafico della circonferenza goniometrica:

Angoli sulla circonferenza goniometrica a colori.

Ad esempio, come determinare sin(150°)\sin(150\degree)?

  1. Cerca l'angolo 150°150\degree; e
  2. Come abbiamo imparato in precedenza, il seno è la coordinata yy, quindi prendiamo la seconda coordinata dal punto corrispondente della circonferenza goniometrica:
sin(150°)=12\qquad \sin(150\degree) = \frac{1}{2}

In alternativa, inserisci l'angolo di 150° nel nostro calcolatore per la circonferenza goniometrica. Ti mostreremo il valore di sin(150°)\sin(150\degree), ovvero la coordinata yy, il coseno, la tangente, e il grafico della circonferenza trigonometrica.

Come memorizzare la circonferenza goniometrica?

Beh, dipende da cosa vuoi memorizzare. 🙃 Ci sono due cose da ricordare quando si parla di circonferenza goniometrica, o circonferenza triconometrica:

  1. Conversione degli angoli, ovvero come passare da un angolo in gradi a uno in termini di π\pi (radianti); e

  2. Le funzioni trigonometriche degli angoli più diffusi.

Iniziamo con la prima parte, più semplice. Gli angoli più importanti sono quelli che userai sempre:

  • 30°=π/630\degree = \pi/6;
  • 45°=π/445\degree = \pi/4;
  • 60°=π/360\degree = \pi/3;
  • 90°=π/290\degree = \pi/2; e
  • 360°=2π360\degree = 2\pi — l'angolo giro.

Poiché questi angoli sono molto comuni, cerca di impararli a memoria. ❤️ Per qualsiasi altro angolo, puoi utilizzare la formula di conversione degli angoli:

α [rad]=π180°×α [gra]\alpha\ [\mathrm{rad}] = \frac{\pi}{180\degree}\times \alpha\ [\mathrm{gra}]

La conversione dei radianti della circonferenza goniometrica in gradi non dovrebbe più essere un problema! 💪

L'altra parte — ricordare l'intero grafico della circonferenza goniometrica, con i valori di seno e coseno — è un processo un po' più lungo. Non lo descriveremo qui, ma ti invitiamo a dare un'occhiata a quest'articolo sulla circonferenza goniometrica, o a questa pagina WikiHow. Se preferisci guardare un video 🖥️ piuttosto che leggere 📘, guarda uno di questi due video che spiegano come memorizzare la circonferenza goniometrica:

  • Circonferenza goniometrica;
  • Un trucco per ricordare i valori sulla circonferenza goniometrica [EN]; e
  • Come memorizzare la circonferenza goniometrica in pochi minuti!!! [EN].

Ricorda che puoi sempre attivare la funzione di auto-traduzione su YouTube per comprendere i video.

Inoltre, questa tabella con gli angoli più comuni potrebbe esserti utile:

α\mathrm{\boldsymbol{\alpha}} (angolo)

Funzioni trigonometriche

gra\mathrm{gra}

rad\mathrm{rad}

sin(α)\sin(\alpha)

cos(α)\cos(\alpha)

tan(α)\tan(\alpha)

30°30\degree

π/6\pi/6

1/21/2

3/2\sqrt{3}/2

3/3\sqrt{3}/3

45°45\degree

π/4\pi/4

2/2\sqrt{2}/2

2/2\sqrt{2}/2

11

60°60\degree

π/3\pi/3

3/2\sqrt{3}/2

1/21/2

3\sqrt{3}

E se qualche metodo fallisce, puoi tranquillamente usare il nostro calcolatore per la circonferenza goniometrica — è qui per te, per sempre. ❤️ Speriamo che giocare con questo strumento ti aiuti a capire e a memorizzare i valori della circonferenza trigonometrica!

FAQ

Qual è la tangente di 30 gradi sulla circonferenza goniometrica?

tan 30° = 1/√3. Per trovare questa risposta sulla circonferenza goniometrica, o circonferenza trigonometrica, iniziamo trovando i valori di sin e cos come coordinate y e x, rispettivamente: sin 30° = 1/2 e cos 30° = √3/2. Ora usa la formula. Ricorda che tan 30° = sin 30° / cos 30° = (1/2) / (√3/2) = 1/√3, come indicato. Vedi come è facile?

Come si trova la cosecante sulla circonferenza goniometrica?

Per determinare la cosecante di θ sulla circonferenza goniometrica, o circonferenza trigonometrica:

  1. Dal centro del cerchio disegna il raggio corrispondente all'angolo θ;
  2. Disegna le linee tangenti al cerchio nei punti (0,1) e (0,-1);
  3. Prolunga il raggio del punto 1 in modo che intersechi una di queste tangenti;
  4. La distanza dal centro al punto di intersezione del passo 3 è la cosecante dell'angolo θ; e
  5. Se non c'è un punto di intersezione, la cosecante di θ è indefinita (questo accade quando sin θ = 0).

Come si trova l'arcoseno di 1/2 sulla circonferenza goniometrica?

Poiché l'arcoseno è la funzione inversa della funzione seno, trovare arcsin(1/2) equivale a trovare un angolo il cui seno è uguale a 1/2. Sulla circonferenza goniometrica, chiamata anche circonferenza trigonometrica, i valori del seno sono le coordinate y dei punti sul cerchio. Osservando la circonferenza goniometrica, vediamo che la coordinata y è uguale a 1/2 per l'angolo π/6, cioè 30°.

Circonferenza goniometrica in un sistema di coordinate con la formula dell'identità pitagorica.

Il nostro calcolatore ti ha aiutato a risolvere il tuo problema?

Check out 22 similar trigonometry calculators 📐

Arccos

Arcsin

Arctan